Chemically Based Mathematical Model for Development of Cerebral Cortical Folding Patterns

نویسندگان

  • Deborah A. Striegel
  • Monica K. Hurdal
چکیده

The mechanism for cortical folding pattern formation is not fully understood. Current models represent scenarios that describe pattern formation through local interactions, and one recent model is the intermediate progenitor model. The intermediate progenitor (IP) model describes a local chemically driven scenario, where an increase in intermediate progenitor cells in the subventricular zone correlates to gyral formation. Here we present a mathematical model that uses features of the IP model and further captures global characteristics of cortical pattern formation. A prolate spheroidal surface is used to approximate the ventricular zone. Prolate spheroidal harmonics are applied to a Turing reaction-diffusion system, providing a chemically based framework for cortical folding. Our model reveals a direct correlation between pattern formation and the size and shape of the lateral ventricle. Additionally, placement and directionality of sulci and the relationship between domain scaling and cortical pattern elaboration are explained. The significance of this model is that it elucidates the consistency of cortical patterns among individuals within a species and addresses inter-species variability based on global characteristics and provides a critical piece to the puzzle of cortical pattern formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth in a Turing Model of Cortical Folding

The brain’s cerebral cortex is folded into many gyri (hills) and sulci (valleys). Little is known about how the cortex folds or why the folds are located where they are. We have developed a spatio-temporal mathematical model of cortical folding to address this question. Our model utilizes a Turing reaction-diffusion system on an exponentially growing prolate spheroidal domain. This domain appro...

متن کامل

Modelling cortical folding pattern formation of the brain with a Turing system

The folding patterns of the brain vary dramatically across species. Moreover, the location of sulcal (valley) and gyral (ridge) folds differ considerably in terms of their size, shape and extent even within a species. A paradigm for cortical pattern formation within or across species has not become apparent. Discussions as to how cortical folding patterns occur have recently emerged in the lite...

متن کامل

Biomechanisms for modelling cerebral cortical folding

Understanding the biomechanical mechanisms by which the cerebral cortex folds is a fundamental problem in neuroscience. Current mathematical models of cortical folding do not include three dimensional geometry or measurement of cortical growth in developing brains extracted from experimental data. We present two biomechanical models of cortical folding which integrate 3D geometry and informatio...

متن کامل

Cerebral cortical folding analysis with multivariate modeling and testing: Studies on gender differences and neonatal development

This paper presents a novel statistical framework for human cortical folding pattern analysis that relies on a rich multivariate descriptor of folding patterns in a region of interest (ROI). The ROI-based approach avoids problems faced by spatial normalization-based approaches stemming from the deficiency of homologous features between typical human cerebral cortices. Unlike typical ROI-based m...

متن کامل

Cerebral cortex expansion and folding: what have we learned?

One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2009